pyvista.DataSetFilters.plot_over_circular_arc#
- DataSetFilters.plot_over_circular_arc(
- pointa,
- pointb,
- center,
- resolution=None,
- scalars=None,
- title=None,
- ylabel=None,
- figsize=None,
- figure=True,
- show=True,
- tolerance=None,
- fname=None,
- progress_bar=False,
Sample a dataset along a circular arc and plot it.
Plot the variables of interest in 2D where the X-axis is distance from Point A and the Y-axis is the variable of interest. Note that this filter returns
None
.- Parameters:
- pointasequence[
float
] Location in
[x, y, z]
.- pointbsequence[
float
] Location in
[x, y, z]
.- centersequence[
float
] Location in
[x, y, z]
.- resolution
int
,optional
Number of pieces to divide the circular arc into. Defaults to number of cells in the input mesh. Must be a positive integer.
- scalars
str
,optional
The string name of the variable in the input dataset to probe. The active scalar is used by default.
- title
str
,optional
The string title of the
matplotlib
figure.- ylabel
str
,optional
The string label of the Y-axis. Defaults to the variable name.
- figsize
tuple
(int
),optional
The size of the new figure.
- figurebool, default:
True
Flag on whether or not to create a new figure.
- showbool, default:
True
Shows the
matplotlib
figure whenTrue
.- tolerance
float
,optional
Tolerance used to compute whether a point in the source is in a cell of the input. If not given, tolerance is automatically generated.
- fname
str
,optional
Save the figure this file name when set.
- progress_barbool, default:
False
Display a progress bar to indicate progress.
- pointasequence[
Examples
Sample a dataset along a high resolution circular arc and plot.
>>> from pyvista import examples >>> mesh = examples.load_uniform() >>> a = [mesh.bounds[0], mesh.bounds[2], mesh.bounds[5]] >>> b = [mesh.bounds[1], mesh.bounds[2], mesh.bounds[4]] >>> center = [mesh.bounds[0], mesh.bounds[2], mesh.bounds[4]] >>> mesh.plot_over_circular_arc( ... a, b, center, resolution=1000, show=False ... )